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Site-specific phosphorylation of intermediate filament (IF) proteins on serine and threonine
residues leads to dynamic alterations in filament structure. Site- and phosphorylation
state-specific antibodies for IF proteins can visualize spatial and temporal distribution of
site-specific IF protein phosphorylations in the cell. These antibodies are also useful to
identity IF kinases involved in cellular events, including cell signaling and cell cycle.
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Intermediate filaments (IFs) constitute major components
of the cytoskeleton and the nuclear envelope in most types
of eukaryotic cells (1, 2). Although IFs were thought to be
relatively stable compared to other cytoskeletons such as
microtubles and actin filaments, it has become increasingly
evident that site-specific phosphorylation of IF proteins
dynamically alters their filament structure. Site-specific
phosphorylations are spatially and temporally regulated
during cell signaling and cell cycle, and some kinases
responsible for the phosphorylation in vivo have been
identified (see review, 3). Thus intracellular organization
of IF networks is under control of protein kinases and
phosphatases. We describe here a brief overview of
advances in knowledge concerning the regulation of IF
organization and IF kinase activities. We also summarize
recent attempts at monitoring site-specific IF protein
phosphorylations and at identifying in vivo IF kinases
during cell signaling and cell cycle. In both cases we utilized
site- and phosphorylation state-specific antibodies which
are raised against predesigned phosphopeptides and which
recognize phosphorylations of IF proteins at specific serine/
threonine residues.

In vitro regulation of IFs by site-specific phosphor-
ylation

The first direct evidence that organization of IFs is
regulated by phosphorylation was obtained in in vitro
studies using vimentin (4). Vimentin filaments reconstitut-
ed in vitro underwent complete disassembly when phos-
phorylated by purified cAMP-dependent protein kinase (A
kinase) or protein kinase C (C kinase). Subsequently,
similar in vitro disassembly induced by phosphorylation
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was noted for almost all major IF proteins, such as vimentin
(4-14), glial fibrillary acidic protein (GFAP) (11, 12),
desmin (5, 13, 14), keratin (15), a-internexin (16),
neurofilament (NF)-L (17-20), and lamin (21-26).

IF proteins are composed of an amino-terminal head, a
central rod, and carboxy-terminal tail domains (2). Most of
the phosphorylation sites of vimentin (9, 27-30), GFAP
(11, 12, 31), desmin (13, 14, 32), keratin 8 (33), and NF-L
(19, 34) are located in the head domain and phosphoryla-
tion of the head domain is responsible for disassembly of
these IFs. On the other hand, NF-H, NF-M, and lamins
exhibit characteristics somewhat different from those of
above IFs. The tail domains of NF-H and NF-M contain the
repeated motif Lys-Ser-Pro or Lys-Ser-Pro-X-Lys that are
heavily phosphorylated in vitro (35-38) and in vivo (35,
39-41). However, phosphorylation of these sites does not
induce disassembly but is considered to regulate the space
between individual filaments in the NF fiber network in
vivo. Phosphorylation sites of lamins by cde2 kinase are
located in both head and tail domains (21, 42, 43), and
Serl16 of chicken lamin B; was shown to be important for
lamin head-to-tail polymerization, in vitro (23).

Site- and phosphorylation state-specific antibodies, a
new tool for studying in vivo protein phosphorylation
events

In 1983, Sternberger and Sternberger reported that a
subset of their neuron-specific monoclonal antibodies rec-
ognized the specifically phosphorylated form of neurofila-
ments (NFs) but not the nonphosphorylated forms (Table
I). Immunocytochemical staining using these antibodies
demonstrated that NFs of certain neuronal cell bodies,
dendrites, and proximal axons were nonphosphorylated
and those of distal axons were phosphorylated (44). Their
data were innovative, because they demonstrated that an
antibody can distinguish phosphorylated and nonphosphor-
ylated states of a protein and that such a phosphorylation
state-specific antibody enables visualization of the intracel-

2T0Z ‘2 18003100 U0 [elidsoH UensLyD enybuey) e /6io'seudnolploixoqly/:dny woly papeojumoq


http://jb.oxfordjournals.org/

408

M. Inagaki et al.

TABLE 1. Phosphorylation state-specific antibodies.
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All numberings for tau protein are according to the longest human tau isoform of 441 amino acids (95). Abbreviations for usage:
EL, enzyme-linked immunosorbent assay (ELISA); IB, immunoblotting; [E, immunoelectron micrescopy; IP, immunoprecipita-
tion; IS, immunocytochemical staining; RI, redicimmunoassay.

2T0Z ‘2 18003100 U0 [elidsoH Ue s LyD enybuey) e /Bio'seudnolploixoqly/:dny woly papeojumoq


http://jb.oxfordjournals.org/

Production and Application of Site- and Phosphorylation State- Specific Antibodies 409

lular distribution of protein phosphorylation. Thereafter,
similar phosphorylation state-specific monoclonal anti-
bodies against a variety of phosphoproteins including NF's,
7 (tau) and microtubule-associated protein 1B (MAP1B)
have been produced and characterized (Table I). In most
cases, the sites of the phosphorylated epitopes were un-
known because the antibodies were produced by immuniza-
tion with tissue homogenates or purified proteins. In some
cases, the epitopes have been identified, however the

epitopes as such were results of chance (Table I). The in
vitro data that IF proteins are phosphorylated by distinct
kinases at different phosphorylation sites prompted us to
monitor site-specific phosphorylation of IF proteins in vivo.

To produce an antibody that recognizes phosphorylation
of a protein at a specific site, we were the first to utilize a
phosphorylated peptide as an antigen (45, 46) (Table II).
The phosphorylated peptides contained phosphorylated
serine/threonine residues which had been identified as

TABLE II. Site- and phosphorylation state-specific antibodies.
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All numberings for tau protein are according to the longest human tau isoform of 441 amino acids (95). Abbreviations for usage: EL,
enzyme-linked immunosorbent assay (ELISA); IB, immunoblotting; IE, immunoelectron microscopy; IP, immunoprecipitation; IS,

immunocytochemical staining.
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phosphorylation sites, in in vitro studies. The production of
a site- and phosphorylation state-specific antibody by a
phosphorylated peptide has the advantage that a phosphor-
ylation site as an epitope can be predesigned (45-48)
(Table II).

The following is a brief description of our method used to
prepare site- and phosphorylation state-specific antibodies.
A synthetic peptide that was phosphorylated by protein
kinases or a synthetic phosphopeptide served as the anti-
gen. We first used as an antigen the synthetic peptide
phosphorylated by several protein kinases (45, 46). There
is now an established method for synthesizing phosphopep-
tides, without kinase. Therefore, production of antibodies
against such phosphopeptides can now be readily facilitated
(Table II). Since 5 or 6 amino acid residues constitute the

cdc2 kinase

M. Inagaki et al.

antigen epitope recognized by the antibody molecule, a
peptide consisting of a phosphorylated serine or threonine
and its flanking sequences of 5 amino acids (11 amino acids)
was designed (45). We introduced a cysteine residue at the
N or C terminal of the synthetic peptide and bound it to the
carrier protein, keyhole limpet hemocyanin (KLH), using
maleimidobenzoic acid N-hydroxysuccinimide ester (MBS).
KLH, one of the most commonly used carrier proteins, is
effective for antigen presentation necessary for antibody
production. We used BDF1 [(C57BL/6 x DBA2)F1] mice
for immunization, since we find that this F1 hybrid mice
produces a larger amount of antibodies against vimentin/
GFAP phosphopeptides than do other strains.

We asked why the phosphopeptide of vimentin and
GFAP readily raise an antibody specific not only for the

CF kinase

prometaphase metaphase

Fig. 1.

anaphase telophase

Immunofluorescence micrographs of mitotic U251 human glioma cells stained with the antibody 4A4, KT13/KT34, or YT33/

TMB0 (50, 52, 54). The antibodies 4A4, KT13/KT34, and YT33/TM50 recognize Ser55-phosphorylated vimentin by cdc2 kinase, Ser13-/
Ser34-phosphorylated GFAP by CF kinase, and Ser33- /Ser50-phosphorylated vimentin by C kinase, respectively. (Modified with permission,

from Refs. 50 and 52.)
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phosphopeptide but also for the native phosphoprotein.
This question can be addressed by considering the secon-
dary structure of vimentin and GFAP. The site of phospho-
rylation is mainly located in the head domain, which is
essential for filament formation. Analysis of the secondary
structure using the Chou and Fasman method (49) revealed
that this domain has neither a stable alpha-helix structure
nor a beta sheet structure but does have the g turn
structure seen in the case of synthetic peptide/phospho-
peptide. Such structural homology ensures that an antibody
against phosphopeptides of vimentin/GFAP can recognize
not only an antigen phosphopeptide but also phosphovimen-
tin/phosphoGFAP.

Detection of in vivo IF kinase activities

We utilized the site- and phosphorylation state-specific
antibodies to identify in vivo IF kinases. Among the in vitro
phosphorylation sites of IF proteins, there are sites phos-
phorylated by a single kinase. For example, Ser33, Ser55,
and Ser82 residues of vimentin are sites specific for C
kinase, cdc2 kinase, and CaM kinase II, respectively (see
review, 3). Such a specific site serves as a pertinent
substrate to detect in vivo phosphorylation of IF, by a
specific kinase. To determine whether cdc2 kinase phos-
phorylates vimentin in vivo, we developed a monoclonal
antibody that specifically recognizes phosphorylated vi-
mentin at Ser55 residue (50). Ser55 of vimentin was
phosphorylated in various types of cells during early
mitotic phases (Fig. 1) and chromatographical analysis of
mitotic cell lysates revealed a single peak of vimentin-
Ser55 kinase activity that is identical to cdc2 kinase (50).
These data indicate that cdc2 kinase directly and
specifically phosphorylates vimentin during early mitotic
phases.

Immunocytochemical studies using two monoclonal anti-
bodies that specifically recognize phosphorylated vimentin
at Ser33 and Ser82, respectively, revealed differential
phosphorylation of vimentin by C kinase and CaM kinase II
during cell signaling and cell cycle (51, 52). Receptor-
mediated phosphoinositide hydrolysis in differentiated
astrocytes led to activation of both C kinase and CaM kinase
II, but vimentin was phosphorylated only by CaM kinase II,
not by C kinase (51). CaM kinase II phosphorylates
vimentin when activated by Ca** signaling (51). Moreover,
our recent studies revealed that Ca** signaling in a localized
area of an astrocyte induced vimentin phosphorylation by
CaM kinase II, in the same restricted area, not in other
regions of the cell (53).

We found the in vivo phosphorylation of vimentin by C
kinase specifically in mitotic cells but not in interface and
differentiated cells (Fig. 1) (52). An activator of C kinase,
phorbol ester, enhances vimentin phosphorylation by C
kinase exclusively in mitotic cells and disrupting the
organization of intracellular membranes of interphase cells
led to vimentin phosphorylation by C kinase. Therefore, we
assume that C kinase phosphorylates vimentin, concomi-
tant with intracellular membrane reorganization during
mitosis (52). Thus, vimentin phosphorylations by C kinase
and CaM kinase Il are separately regulated, by distinct
mechanisms.

Site- and phosphorylation state-specific antibodies are
also useful to detect unidentified in vivo IF kinase activ-
ities. When an antibody recognizes the phosphorylation of
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a serine/threonine residue which is commonly the target of
redundant kinases, it may detects an unidentified IF kinase
activity (45, 48). Ser13 and Ser34 residues of GFAP are
phosphorylated by redundant kinases in vitro. We recently
developed monoclonal antibodies which recognize phos-
phorylated GFAP at these sites. Immunocytochemical
studies using these monoclonal antibodies revealed a kinase
activity that phosphorylates GFAP in the cleavage furrow
(Fig. 1) (54). The kinase phosphorylates also ectopically
expressed GFAP of non-glial cell at the cleavage furrow and
was activated specifically during metaphase-anaphase
transition (54). Purification and identification of the kinase
named cleavage furrow kinase (CF kinase) is ongoing and
we will investigate physiological functions and mechanisms

of activation at the onset of anaphase.

Conclusions

The present review concerns two major advances in the
field of IFs. First, the IF structure was shown to be
regulated by phosphorylation and dephosphorylation of
their constitute proteins; second, we have established a
method to produce site- and phosphorylation state-specific
antibodies for phosphoproteins such as phosphovimentin
and phosphoGFAP. Phosphorylation and dephosphoryla-
tion of proteins dynamically alter their structures and
related functions. Therefore, detection and visualization of
the site-specific protein phosphorylation will reveal un-
known mechanisms governing the regulation of wide-
ranged cellular activities. The site- and phosphorylation
state-specific antibody we have described here is expected
to have a wide application.

We thank M. Ohara for critique of the manuscript and K. Kuromiya
for secretarial services.
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